Нейтронное оружие — разновидность ядерного оружия, у которой искусственно увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения для поражения живой силы и вооружения противника при ограничениях поражающих воздействий ударной волны и светового излучения.

Нейтронный заряд конструктивно представляет собой обычный ядер­ный заряд малой мощности, к которому добавлен блок, содержащий неболь­шое количество термоядерного топлива (смесь дейтерия и трития). При под­рыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. Большая часть энергии взрыва при примене­нии нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80% энергии взрыва составляет энергия потока быстрых нейтронов, и только 20% приходится на остальные поражающие факторы (ударную волну, ЭМИ, световое излучение).

Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение, не говоря уже об альфа- и бета- частицах. Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в укрытиях, даже там, где обеспечивается надёжная защита от обычного ядерного взрыва. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни. На людей действует как само нейтронное излучение, так и наведённая радиация.

Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В технике и предметах под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва. Так, например, экипаж танка Т-72, находящегося в 700 м от эпицентра нейтронного взрыва мощностью в 1 кт, мгновенно получит 50 % смертельной дозы облучения и погибнет в течение нескольких минут. Физически этот танк не пострадает, однако наведённая радиоактивность приведёт к получению новым экипажем, управляющим данным танком, смертельной дозы радиации в течение суток.

Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности, невелика. Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно — излучение имеет малый радиус, а прочие поражающие факторы окажутся снижены. Реально производимые нейтронные боеприпасы имеют мощность не более 1 кт. Подрыв такого боеприпаса даёт зону поражения нейтронным излучением радиусом около 1,5 км (незащищённый человек получит опасную для жизни дозу радиации на расстоянии 1350 м). Вопреки распространённому мнению нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для того же килотонного заряда имеет радиус около 1 км.

Нейтронные боеприпасы разрабатывались в 1960—1970-х годах, главным образом, для повышения эффективности поражения бронированных целей и живой силы, защищённой бронёй и простейшими укрытиями. Бронетехника 1960-х годов, разработанная с учётом возможности применения на поле боя ядерного оружия, чрезвычайно устойчива ко всем его поражающим факторам. Другим мотивом разработки нейтронных зарядов было их использование в системах противоракетной обороны. Для защиты от массированного ракетного удара в эти годы на вооружение ставились ракетные комплексы с ядерной боевой частью, но применение обычного ядерного оружия против высотных целей сочли недостаточно эффективным, поскольку основной поражающий фактор — ударная волна, — в разрежённом воздухе на большой высоте и, тем более, в космосе не образуется, световое излучение поражает боеголовки только в непосредственной близости от центра взрыва, а гамма-излучение поглощается оболочками боеголовок и не может нанести им серьёзного вреда. В таких условиях превращение максимальной части энергии взрыва в нейтронное излучение способствовало повышению вероятности поражения ракет противника.

Естественно, после появления сообщений о разработке нейтронного оружия стали разрабатываться и методы защиты от него. Были разработаны новые типы брони, которая способна защитить технику и её экипаж от нейтронного излучения. Для этой цели в броню добавляются листы с высоким содержанием бора, являющегося хорошим поглотителем нейтронов, а в броневую сталь добавляется обеднённый уран (уран с пониженной долей изотопов U-234 и U-235). Кроме того, состав брони подбирается так, чтобы она не содержала элементов, дающих под действием нейтронного облучения сильную наведённую радиоактивность.